jsPsych/docs/demos/js/webgazer/ridgeWorker.mjs

137 lines
4.4 KiB
JavaScript

"use strict";
console.log("thread starting");
// Add src/util.mjs and src/mat.mjs to the same directory as your html file
importScripts("./worker_scripts/util.js", "./worker_scripts/mat.js"); // [20200708] Figure out how to make all of this wrap up neatly
var ridgeParameter = Math.pow(10, -5);
var resizeWidth = 10;
var resizeHeight = 6;
var dataWindow = 700;
var trailDataWindow = 10;
var trainInterval = 500;
var screenXClicksArray = new self.webgazer.util.DataWindow(dataWindow);
var screenYClicksArray = new self.webgazer.util.DataWindow(dataWindow);
var eyeFeaturesClicks = new self.webgazer.util.DataWindow(dataWindow);
var dataClicks = new self.webgazer.util.DataWindow(dataWindow);
var screenXTrailArray = new self.webgazer.util.DataWindow(trailDataWindow);
var screenYTrailArray = new self.webgazer.util.DataWindow(trailDataWindow);
var eyeFeaturesTrail = new self.webgazer.util.DataWindow(trailDataWindow);
var dataTrail = new self.webgazer.util.DataWindow(trailDataWindow);
/**
* Performs ridge regression, according to the Weka code.
* @param {Array} y - corresponds to screen coordinates (either x or y) for each of n click events
* @param {Array.<Array.<Number>>} X - corresponds to gray pixel features (120 pixels for both eyes) for each of n clicks
* @param {Array} k - ridge parameter
* @return{Array} regression coefficients
*/
function ridge(y, X, k) {
var nc = X[0].length;
var m_Coefficients = new Array(nc);
var xt = self.webgazer.mat.transpose(X);
var solution = new Array();
var success = true;
do {
var ss = self.webgazer.mat.mult(xt, X);
// Set ridge regression adjustment
for (var i = 0; i < nc; i++) {
ss[i][i] = ss[i][i] + k;
}
// Carry out the regression
var bb = self.webgazer.mat.mult(xt, y);
for (var i = 0; i < nc; i++) {
m_Coefficients[i] = bb[i][0];
}
try {
var n = m_Coefficients.length !== 0 ? m_Coefficients.length / m_Coefficients.length : 0;
if (m_Coefficients.length * n !== m_Coefficients.length) {
console.log("Array length must be a multiple of m");
}
solution =
ss.length === ss[0].length
? self.webgazer.mat.LUDecomposition(ss, bb)
: self.webgazer.mat.QRDecomposition(ss, bb);
for (var i = 0; i < nc; i++) {
m_Coefficients[i] = solution[i][0];
}
success = true;
} catch (ex) {
k *= 10;
console.log(ex);
success = false;
}
} while (!success);
return m_Coefficients;
}
//TODO: still usefull ???
/**
*
* @returns {Number}
*/
function getCurrentFixationIndex() {
var index = 0;
var recentX = this.screenXTrailArray.get(0);
var recentY = this.screenYTrailArray.get(0);
for (var i = this.screenXTrailArray.length - 1; i >= 0; i--) {
var currX = this.screenXTrailArray.get(i);
var currY = this.screenYTrailArray.get(i);
var euclideanDistance = Math.sqrt(Math.pow(currX - recentX, 2) + Math.pow(currY - recentY, 2));
if (euclideanDistance > 72) {
return i + 1;
}
}
return i;
}
/**
* Event handler, it store screen position to allow training
* @param {Event} event - the receive event
*/
self.onmessage = function (event) {
var data = event.data;
var screenPos = data["screenPos"];
var eyes = data["eyes"];
var type = data["type"];
if (type === "click") {
self.screenXClicksArray.push([screenPos[0]]);
self.screenYClicksArray.push([screenPos[1]]);
self.eyeFeaturesClicks.push(eyes);
} else if (type === "move") {
self.screenXTrailArray.push([screenPos[0]]);
self.screenYTrailArray.push([screenPos[1]]);
self.eyeFeaturesTrail.push(eyes);
self.dataTrail.push({ eyes: eyes, screenPos: screenPos, type: type });
}
self.needsTraining = true;
};
/**
* Compute coefficient from training data
*/
function retrain() {
if (self.screenXClicksArray.length === 0) {
return;
}
if (!self.needsTraining) {
return;
}
var screenXArray = self.screenXClicksArray.data.concat(self.screenXTrailArray.data);
var screenYArray = self.screenYClicksArray.data.concat(self.screenYTrailArray.data);
var eyeFeatures = self.eyeFeaturesClicks.data.concat(self.eyeFeaturesTrail.data);
var coefficientsX = ridge(screenXArray, eyeFeatures, ridgeParameter);
var coefficientsY = ridge(screenYArray, eyeFeatures, ridgeParameter);
self.postMessage({ X: coefficientsX, Y: coefficientsY });
self.needsTraining = false;
}
setInterval(retrain, trainInterval);